September's Paper of the Month

From the mating dance of the peacock spider to brood parasitism in the common cuckoo, behavioural ecology is a fascinating and complex science. It is defined as the study of the evolutionary behaviour of animals due to ecological selection pressures, and even the smallest of organisms such as bacteria can effectively emulate eukaryotic social behaviours. 

Streptomycetes are one such genus which can form multi-cellular colonies with distinct multi-nucleated hyphae structures. These hyphae have distinct compartments separated through infrequent cross-walls. The group is also significant due to their medicinal purpose; they produce over half of the world’s antibacterial and antiparasitic drugs and are commonly known for their forest like smell caused by the organic compound Geosmin. 

The group harbour perplexing traits and behaviours. When mechanically macerated, the hyphae surprisingly do not ‘bleed’ to death suggesting the end is plugged and compartmentalised. Furthermore, growing hyphal tips can form up to 100 septa and in such multi-nucleated species, which lack DNA damage control proteins, we are left wondering how DNA can be protected from intense intra-cellular movement. 

September’s Paper of the Month is a collaboration between the laboratory of Professor Gilles Van Wezel and the Koster laboratory and their work using the CMS196M to answer the questions surrounding the complex behaviour of Streptomyces albus.

Read more...