One Small Sample for Man…

Exploration of our universe may help uncover some of the key questions behind our evolutionary history. 

Exploration of our universe may help uncover some of the key questions behind our evolutionary history. 

The universe is thought to be approximately 13.8 billion years old, with the earliest forms of life on Earth thought to have begun as early as 4.1 billion years ago. Through the process of evolution simple carbon-based life forms evolved into some of the most complex forms of life we see today, yet some of the key questions as to how life began remain elusive. Some theories even suggest that life in the form of micro-organisms may have been brought to Earth from elsewhere in the Solar System through meteorite impacts. 

Our planet is just one of an unimaginable number. Understanding the evolution of planetary bodies in our solar system is one way we may attempt to provide an answer to our origins. 

The members of the Planetary and Space Sciences (PSS) discipline at The Open University have been involved in some of the major space missions including Stardust, Genesis, Rosetta and Cassini-Huygens. Based in Milton Keynes, the group have developed and built scientific instruments that have flown on some of these space missions. The OU planetary scientists are also world renowned for their laboratory analysis of extraterrestrial samples including Moon samples collected by Apollo and Luna missions and meteorites from Mars and asteroids.

In late 1960s and early 1970s during the manned Apollo and unmanned Luna missions to the Moon, surface samples were collected for laboratory analysis on Earth. Almost 50 years on, these same samples are being analysed using modern instrumentation to reveal new insights into the geological history of the Moon, including one of the most exciting discoveries of lunar water. These new and exciting results from recent laboratory studies on lunar samples were complemented by remote sensing data returned by a number of recent lunar missions such as India’s Chandrayaan-1 and NASA’s LRO discovering water at the lunar surface. 

Apollo 11, the first manned lunar landing, with astronaut Buzz Aldrin. 

Apollo 11, the first manned lunar landing, with astronaut Buzz Aldrin. 

We recently visited the lab of Dr Mahesh Anand at The Open University where they have measured water and its hydrogen isotopic composition in the mineral apatite in lunar samples by various Apollo missions. Dr Alice Stephant recently joined Dr Anand’s team at the OU and together they are planning to analyse water and hydrogen isotope composition of water trapped in tiny inclusions of melt (called melt inclusions or MI) in moon rocks, sourced from lunar volcanoes.

Moon rocks from various Apollo missions, including Apollo 11, were carefully cut and polished to approximately 30 µm thickness, and are ready for MI work. 

Using the Linkam TS1400XY, samples can be heated up to approximately 1400 °C, the temperature reached within lunar volcanoes, and quickly quench cooled to give the samples a smooth, glass like finish. These samples can then be analysed for their water contents and hydrogen isotopic composition using other analytical techniques. 

Dr Anand using the TS1400XY to look at mineral ilmenite, which is one of the constituents of the “dark” patches (called mare) on the moon. 

Dr Anand using the TS1400XY to look at mineral ilmenite, which is one of the constituents of the “dark” patches (called mare) on the moon. 

Compositional and isotopic analysis is a way of fingerprinting the origin and sources of various chemicals in our solar system. By exploring the potential sources of water and comparing samples from other planets within our solar system, it may help towards better understanding the evolutionary history and the formation of our solar system.

Analysing the composition of water is not only important in terms of tracing its origin but can have important implications for the future exploration of the solar system. 

The discovery of water may hold the key into the development of rocket fuel on the Moon itself. The establishment of a permanent base on the moon with its own source of rocket fuel would allow space exploration missions to delve deeper into space, by avoiding the huge amounts of energy required to escape the strong gravitational pull of the Earth.

We would like to thank Dr Anand for showing us his laboratory and the department and for discussing his work. We look forward to catching up soon. 

By Tabassum Mujtaba

European Materials Research Meeting

Warsaw at night - the largest city and capital of Poland.

Warsaw at night - the largest city and capital of Poland.

We'll be in Warsaw next week for the European Materials Research Society 2017 fall meeting. The conference will consist of symposia, oral and poster presentations and a plenary session, providing an international forum to discuss advances in the field of materials science.

If you're at the show, come along and take the chance to see some of our new products, including the new T96 controllers and Linkpad. We’ll be on booth 9!

Linkam shows prototype Plunger

Imaging of biological samples embedded in vitrified ice has become of great interest in recent years as it provides several advantages: the biological sample is in a fully hydrated state with superior preservation down to ultra-structural level, a vitrified sample is naturally compatible with the vacuum required for EM / CLEM (Correlative Light and Electron Microscopy) and cryo-fluorescence provides very low photo-bleaching and high signal to noise imaging.

Preparation and handling of vitrified samples normally requires special skills and techniques. The novel design of the Linkam Cryo Plunger makes this a simple and reproducible process.

Linkam were showing the prototype at MMC in Manchester recently...

Investing in the Digital Age

The UK government has announced today its plans to invest in groups researching advancements in battery technology. Their aim is to push towards a Modern age method of energy storage and usage. 

Everyday consumers are now able to generate their own energy through means such as solar panels and store it in batteries for later use. Traders will be able to purchase this stored energy and trade this directly with the national grid, helping to save billions of pounds for consumers. 

Already much work has been invested in the area of battery research. Our April Paper of the Month focused on improving the capacity and conductivity of lithium ion batteries while another looked at improving the efficiency of a thermophotovoltaics system

If you would like to learn more about Linkam stages and their application in battery research and renewable energy, contact us directly or talk to us in person at the EMRS fall meeting in Warsaw. 

Sun, Shows & Photos

April proved a busy month for shows. 

Our first stop for the month was the historical city of Krakow for the 2nd European Conference on Pharmaceutics. Here we showcased two of our new systems, the DSC450 and Freeze Drying Vial System (FDVS), which drew plenty of interest amongst the pharma crowd. It was a great show which further illustrated the importance of sample characterisation within pharmaceutical research and Linkam’s role within it. 
 

Krakow is the second largest city in Poland and one of the oldest, dating back to the 7th Century.  

Krakow is the second largest city in Poland and one of the oldest, dating back to the 7th Century.  

The next stop was the beautiful port city of Bordeaux, which was home for this year’s Focus on Microscopy conference. We took along our cryo-CLEM stage, CMS196M, which fit in well with the show’s theme of new techniques in electron and fluorescent microscopy. 

The evenings saw us take the tram into central Bordeaux where we were lucky enough to try the renowned Bordeaux wine and French cuisine. 
 

A great relaxing spot just outside the Palais des Congrès de Bordeaux where this year’s FOM was held.

A great relaxing spot just outside the Palais des Congrès de Bordeaux where this year’s FOM was held.

Our last stop in April was the University of Lincoln, where this year’s Thermal Analysis and Calorimetry meeting was held. TAC focused on the uses of differential scanning colorimetry across a wide variety of different applications, and as such was the ideal venue to showcase the new DSC450.

The famous Lincoln cathedral which held the title of the world’s tallest building for 238 years.

The famous Lincoln cathedral which held the title of the world’s tallest building for 238 years.

We’ll be continuing our European travels later this month, stopping first in Stockholm for the 6th FIP Pharmaceutical Sciences World Congress 2017, followed shortly by Budapest for the 1st Journal of Thermal Analysis and Calorimetry Conference. We look forward to seeing you there!

Upcoming Shows

Krakow, home of this year’s 2nd European Conference on Pharmaceutics, will be the first of our stops over the next few weeks.

Krakow, home of this year’s 2nd European Conference on Pharmaceutics, will be the first of our stops over the next few weeks.

April will be a month packed full of shows and new products. 

Our first show will be the 2nd European Conference on Pharmaceutics in Krakow which we will be attending from the 3rd – 4th April. 

Next in line is the Focus on Microscopy show in Bordeaux from the 9th – 12th April where we will be bringing along our Cryo-CLEM stage, CMS196M

Our final event of the month will be the TAC 2017 Conference in Lincoln from the 10th – 12th April.

We will be showcasing both of our new systems, the DSC450 and the Freeze Drying Vial System (FDVS), so make sure you come along. 
 

Best Served Cold

A still image of the drying front of a sucrose sample.

A still image of the drying front of a sucrose sample.

Freeze-drying microscopy is a technique used to identify vital formulation parameters for products undergoing lyophilisation. Linkam have created compact freeze drying solutions ideal for both research and industry. Read more about freeze drying microscopy and the Linkam freeze drying stages here

A Linkam Anniversary

A huge congratulation to Brian and Jackie Golder who recently celebrated their 20th anniversary as part of the production team at Linkam. We celebrated their hard work and dedication by throwing a small party, where the whole team got together to tell old stories and enjoy delicious finger foods and desserts. 

The husband and wife duo are experts in wiring and soldering the electrical connections in Linkam stages. 

The husband and wife duo are experts in wiring and soldering the electrical connections in Linkam stages. 

Brian and Jackie were awarded a Linkam trophy in honour of their hard work, as well as £1000 toward a holiday destination of their choice. 

From everyone here at Linkam, thank you both for your hard-work and commitment, we hope you have the holiday of a lifetime. You deserve it!

 

New Products, New Shows

Find out which shows we’ll be travelling to this year on our Events page. 

Find out which shows we’ll be travelling to this year on our Events page. 

We're excited to get going with this year's projects and have plenty of new products that we will be launching throughout 2017. For regular updates keep an eye on the website, Twitter and LinkedIn pages. 

We'll also be exhibiting our products at several trade events across the globe. You can find details of the shows Linkam, and our distributors, will be attending in 2017 on our Events page. 

New to Linkam – the THMS-CKE600

We’re continually aiming to improve our stages and customer satisfaction, that’s why we’ve launched the brand new THMS-CKE600. 

Two of the stages under production. 

Two of the stages under production. 

Building on the success of the original THMS600, this variant scraps the metal interior for a soft spongey one. The Linkam engineers also removed the heating block and piping for some much tastier jam and cream. 

The THMS-CKE600 stage body after anodisation.

The THMS-CKE600 stage body after anodisation.

After some steady rolling and layering, the base of the stage body was complete. 

The finished product. 

The finished product. 

Although the THMS-CKE600 can not do the classic heating and cooling, it tastes pretty nice.

Unfortunately this is just a prototype!

Season’s Greetings from Linkam

2016 has been an amazing year here at Linkam. With the continuing success of the company, Linkam is forever growing and we’ve had the pleasure of adding five new additions to the team this year.  

We’ve also had the opportunity to attend many different shows all over the world, giving us the chance to showcase our stages, talk to customers and learn more about how our stages are being used in real-world applications. 

This year has also seen several new stages and system launches, which have all proved highly popular in a variety of different fields. The Linkam team are always working on new developments. You can keep up to date with all our new releases on our website, as well as on Twitter and LinkedIn.

Let’s end 2016 with a throwback to a Linkam Christmas favourite: 

We wish you all a Merry Christmas and happy new year!

 

Family Fun Day

The Linkam team recently enjoyed a great afternoon of family fun on Epsom Downs, home of the famous Derby Stakes horse race.

We were joined by our partners and families for our trip to the Downs where we enjoyed a wide array of finger foods, beverages and desserts. 

While some enjoyed a relaxing afternoon on the grass, others took part in some high intensity sports and kite flying. We were also lucky to have some talented artists in the midst who did some great face painting for the kids. 

New to Linkam - kite flying lessons by Jim!

New to Linkam - kite flying lessons by Jim!

All in all it was an enjoyable afternoon for the entire family. A big thank you to Jim Hayward, one of our great production engineers, for organising a lovely day out. We’re looking forward to the next one!

By Tabassum Mujtaba

Paper of the Month - September

Cryo-CLEM is an imaging technique which combines the best of fluorescence and cryo electron microscopy for high resolution imaging (image courtesy of Roman Koning, Leiden University Medical Centre).  

Cryo-CLEM is an imaging technique which combines the best of fluorescence and cryo electron microscopy for high resolution imaging (image courtesy of Roman Koning, Leiden University Medical Centre).

 

From the mating dance of the peacock spider to brood parasitism in the common cuckoo, behavioural ecology is a fascinating and complex science. It is defined as the study of the evolutionary behaviour of animals due to ecological selection pressures, and even the smallest of organisms such as bacteria can effectively emulate eukaryotic social behaviours. 

Streptomycetes are one such genus which can form multi-cellular colonies with distinct multi-nucleated hyphae structures. These hyphae have distinct compartments separated through infrequent cross-walls. The group is also significant due to their medicinal purpose; they produce over half of the world’s antibacterial and antiparasitic drugs and are commonly known for their forest like smell caused by the organic compound Geosmin. 

The group harbour perplexing traits and behaviours. When mechanically macerated, the hyphae surprisingly do not ‘bleed’ to death suggesting the end is plugged and compartmentalised. Furthermore, growing hyphal tips can form up to 100 septa and in such multi-nucleated species, which lack DNA damage control proteins, we are left wondering how DNA can be protected from intense intra-cellular movement. 

Imaging cells is a great way of gaining insight into the complex intracellular machinery and dynamic processes. Cryo electron microscopy is a popular method, however the process is sensitive and labour intensive. Fluorescence microscopy although sensitive to biological processes, lacks imaging of the cell morphology and resolution.

Cryo-CLEM is a technique which combines the high resolving power of electron microscopy with the specific labelling capacities of fluorescence microscopy, creating a better picture of cellular mechanics by imaging the same sample location and superimposing the complementing information. 

For such a technique Linkam, alongside Professor Bram Koster and his laboratory at Leiden University Medical Centre, created the cryo-stage CMS196M. Fluorescently labelled samples are embedded in vitrified “glass like” ice and under cryo-conditions the fluorescence signal and the structural details are preserved.

September’s Paper of the Month is a collaboration between the laboratory of Professor Gilles Van Wezel and the Koster laboratory and their work using the CMS196M to answer the questions surrounding the complex behaviour of Streptomyces albus.

They conducted fluorescent light microscopy which highlighted gatherings of lipid blebs within hyphae structures. Through the use of cryo-CLEM they were able to directly label these molecules and visualise them in frozen samples allowing the study of fine cellular details in 3D. 

These assemblies were termed cross-membranes and were found to span across various hyphal regions between cell wall and cell membrane. 

Visualisation studies and permeability assays determined a number of these cross-membranes are impermeable, thus explaining how the bacteria may survive physical maceration. Furthermore comparative visualisation with chromosomes showed the cross-membranes create nuceloid free zones, thus explaining how the bacteria undergo severe compartmentalisation without suffering from DNA damage. 

When discussing the motivations of their work, Dr Roman Koning said: “The motivation of our correlative cryo light and electron microscopy research was twofold, having both a technical and biological goal. 

In terms of the biology, we found occasional intricate lipid structures in Streptomyces bacteria. Streptomyces are long bacteria that grow in soil and waters, do not divide by fission and have a branched mycelium. We wanted to be able to image specific lipid structures in Streptomyces in order to find out what their structure and function could be. 

Since these structures were sparse they were difficult to find by cryo-EM and therefore we tried to locate these lipids by chemically tagging them and localizing them using fluorescence microscopy, after which we imaged the same positions using cryo electron tomography in order to get to know more of what they look like. Additionally many additional (light microscopy) experiments were performed to determine and prove what their function is. 

It appeared that the lipid structures are formed by lipid tubes between the cytoplasmic membrane and the cell wall that can constrict the cell cytoplasm and thereby completely divide it, forming different cellular compartments without fission”.

Through the power of cryo-CLEM the group were able to uncover many of the perplexing mysteries surrounding the unique behaviour of Streptomyces albus. It is exciting to consider the future use of the cryo-CLEM technique and the scientific unknowns we have yet to uncover. 

By Tabassum Mujtaba

Celler, K. et al. Cross-membranes orchestrate compartmentalization and morphogenesis in Streptomyces. Nat. Commun. 7:11836 doi: 10.1038/ncomms11836 (2016).

 

Underground at St Pancras

The Frances Crick Institute is situated beneath St Pancras International railway station in London.

The Frances Crick Institute is situated beneath St Pancras International railway station in London.

When you next take a train from St Pancras have a think about what might be going on beneath your feet.

Just across the road from the station, and 28 metres below the pavement, world leaders in their field are working with some of the highest resolution microscopes on the market to investigate the causes of cancer and other diseases. 

The recently opened Frances Crick Institute brings together scientists from all over the world under one roof and is a partnership between Cancer Research UK, Imperial College, King's College, the Medical Research Council, University College London and the Wellcome Trust. 

I was privileged to be invited to visit recently and I would like to thank the Head of Electron Microscopy, Lucy Collinson, and her colleague, Marie Charlotte, for an extremely interesting tour of the labs. Lucy and her team only moved in a few weeks ago, but already had systems up and running and collecting data - even though they were still surrounded by packing cases.
 
It was great to see the Linkam CMS196 Cryo Correlative stage was already unpacked and ready to start work.

Siting some of the most sensitive scientific instruments in the world so close to one of the busiest train stations in the country was always going to be a challenge. Ensuring that the vibrations from the London Underground and Eurostar do not affect their research has led to some novel civil engineering solutions providing vibration isolation flooring.

Everyone had big smiles on their faces, and no wonder. The bright and roomy new labs and microscopy rooms, the meeting spaces and offices all make for a great working environment, and it’s a far cry from their previous location. It all feels very conducive to continuing and advancing the great work being done. 

The Crick is clearly going to be one of the foremost international life science research facilities and great advancements in our understanding of life will be made there. 

By Duncan Stacey

 

A River Runs Through It

The River Rhone, one of the major rivers in Europe and a beautiful feature of life in Lyon - the location for this year’s European Microscopy Congress. 

The River Rhone, one of the major rivers in Europe and a beautiful feature of life in Lyon - the location for this year’s European Microscopy Congress. 

Is it a fungus? Is it an alga? No it’s Staphylococcus aureus

The last 400 years has seen rapid advancements in the technical capabilities of microscopes, allowing scientists to answer such questions by exploring a world not visible to the naked eye.

Providing a realistic sample environment is also integral to understanding science in the real world. This is where Linkam comes in by creating sample characterisation chambers which work in conjunction with microscopes and spectrometers and allow control of physical parameters around samples.  

As one of the leading international companies in this field it was vital that we attended the 16th edition of the European Microscopy Congress (EMC) which only happens every four years and was held this year at the Lyon Convention Centre from 28th August to 2nd September. 

EMC gathered over 2500 visitors and proved to be an excellent event to showcase our stages which included the DCS600, the RH95 system, the TST350 tensile stage, WS37 warm stage, the LTS420E and the CMS196M Cryo-CLEM stage.

EMC 2016 hosted over 80 exhibitor stands and had over 2,500 visitors.

EMC 2016 hosted over 80 exhibitor stands and had over 2,500 visitors.

Each morning featured a cutting edge plenary lecture delivered by some of the world’s leading scientists. One of our favourites was that delivered by Professor Bram Koster, head of the Electron Microscopy in the department of Molecular Cell Biology at Leiden University Medical Centre. His talk centred on electron microscopy techniques and applications and featured our very own cryo-CLEM stage – the CMS196M

Cryo-CLEM is a new and emerging technique to combine the individual advantages from both Fluorescence and EM by imaging the same sample location with both techniques and superimposing the complementing information. The CMS196M provides a perfect solution for the correlation of high resolution structural information with biochemical processes within cells and as such proved a very popular product during the show.

The convention centre was situated in the beautiful city of Lyon and we were lucky enough to be sandwiched between the Parc de la Tête d'Or and the River Rhone. We enjoyed warm summer evening walks along the river and dined on exquisite French cuisine. 

Parc de la Tête d'Or with a view of the Lyon Convention Centre. 

Parc de la Tête d'Or with a view of the Lyon Convention Centre. 

We would like to say thank you to those we spoke to during the conference and we look forward to seeing you all for the next EMC - Copenhagen 2020.

By Tabassum Mujtaba

 

Paper of the Month - August

In the future it may be more economical to generate power through thermophotovoltaic systems which convert thermal energy into electricity.

In the future it may be more economical to generate power through thermophotovoltaic systems which convert thermal energy into electricity.

Thermophotovoltaics (TPV) is the conversion of thermal radiation released by a thermal emitter into electricity by means of a photovoltaic cell.

Power generation with a TPV system can be envisaged for almost any process and an absence of moving parts has the advantage of low maintenance costs. Thermal emission scales with temperature to a power of 4, meaning temperature above 1000 °C is required to generate significant power in such systems.

However, the wide spectral width of thermal radiation limits the efficiency of TPV conversion as only part of the spectrum is accepted by the photovoltaic cell. A tight control over the thermal radiation spectrum is required to prevent energy dissipating into the environment. The emitter is structured in such a way as to emit thermal radiation outside the required spectral range.

Current methods use structural resonances to control thermal emission. These require complex lithography and possess intrinsic angle dependent spectral variations. 

August’s Paper of the Month by Dyachenko et al., attempts to solve the TPV efficiency problem by designing and using a unique refractory metamaterial as an emitter instead of the traditional structural resonances. This metamaterial is engineered to prevent emission of long wavelength photons through a specifically engineered transition from dielectric to metallic response.

Metamaterials are traditionally made of layers of repeating composite material, designed to have a particular property which is not found naturally. The group designed a new metamaterial made of layers of tungsten and a dielectric material to create a refractory material with unique high temperature stability and selective thermal emission.

Dyachenko et al., conducted several verification experiments to test whether their unique metamaterial matched up to the theoretical expectations. Results indicated a strong absorptivity at short wavelengths and suppression of absorptivity at longer wavelengths, an important parameter for emitters in TPV systems. As the thermal emissivity and absorptivity are equal in reciprocal systems, then the same selective properties are expected for thermal emission. It was also shown that the obtained properties are almost angle independent.

By placing the metamaterial under cycles of extreme thermal stress, they were able to test the thermal stability of the material. The metamaterial was subjected to high temperature annealing experiments in the Linkam TS1500V stage. They chose to use the TS1500 as it allowed measurement of in-situ reflection and emission spectra of the samples using an FTIR spectrometer with a microscope at extreme temperatures up to 1500°C and under vacuum conditions.

The results were encouraging with optical characteristics being stable up to 1000°C supporting its thermal stability for TPV systems. 

The refractory metamaterial does not need lithography and can be deposited by alternating magnetron sputtering. The highlight of the work is the support for the thermal stability and spectral properties of the unique metamaterial for TPV systems. 

Dyachenko, P. N. et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 7:11809 doi: 10.1038/ncomms11809 (2016).