Case Studies

Investigating the Anaerobic Consortia of Fungi and Sulfate-reducing Bacteria in Deep Granite Fractures using Linkam’s THMS600.

The deep biosphere is one of the least understood ecosystems, despite being considered vital for energy cycling of the earth. It is thought to have approximately 19% of the earth’s biomass yet samples are hard to come by, making their study difficult. Microorganisms from the deep biosphere that have been studied are generally prokaryotes, with microeukaryotes being largely ignored.

Recently samples were taken from a 740m deep drill core sample in Sweden after the site was investigated for its suitability for deep nuclear waste repositories. Findings have shown the presence of fossil and active fungi in these deep ecosystems, but little work has gone into understanding them.

Drake et al., studied the microorganisms in these deep crystalline fractured rock samples. Their aim was to gain a better understanding of the microbial processes in the continental crust. The knowledge of this vast realm is very scarce and tells us more about life forms and processes under extreme conditions which may also have important implications for nuclear waste storage. 

Their analyses found the microorganisms belonged to the Kingdom Fungi and were found to be anaerobic. The closest systems studied were that of anaerobic fungi in the rumina of ruminant animals. It was proposed that the fossilised fungi also shared a symbiotic relationship with bacteria in the deep biosphere. 

The group used a THMS600 to help indicate the approximate age of the fungi. Dr Drake said, “The THM600 was used to investigate fluid inclusions in calcite crystals that were spatially related to the fungi. The fluid inclusion signatures gave us information about past conditions (e.g. salinity) in the fracture void. Because no radiometric dating could be made of the fungi, the fluid inclusion signatures (when put in a paleohydrogeological context) serve as an important temporal indicator for when the fungi were active.” 

Their work highlighted an intimate relationship between the fungi and sulphate reducing bacteria, further drawing attention to the richness of the deep oligotrophic biosphere which is often neglected. These fungi were found to provide significant amounts of H2 to autotrophic microorganisms in the crystalline continental crust.

The group also looked at the biochemistry of these fungi and found they may pose a threat to repositories of toxic waste.  This is through either directly breaking down the barriers holding the waste, or by facilitating the bacterial community into doing so. 

Their work highlights the importance of studying these neglected geological microorganisms. With fossil fuels running out, nuclear energy may be the way forward. But to safely store away waste products, understanding their chemical and geological environment is of utmost importance as illustrated by Drake et al., As such it becomes vital to study ecosystems, such as the deep biosphere, in its entirety. 

Read the research paper here

Investigating the effect of water activity on rates of serpentinization of olivine using Linkam’s THMSG600

THMSG600 shown above 

The hydrothermal alteration of mantle rocks, referred as serpentinization, occurs when the mantle is exposed to aqueous fluids circulating below 400°C, leading to the formation of serpentine, hydrogen and other minerals. It is a process heavily involved in mass exchange between the mantle and the surface and influences geochemical cycling and fluid-mobile elements. It occurs in various submarine environments including mid-ocean ridges and subduction zones and it affects the physical and chemical properties of the oceanic lithosphere.

It is also pivotal to current theories on the origin of life. Serpentinization is likely to have provided the crucial chemical gradients required for life to being when the earth was simply rock, water and carbon dioxide. 

Despite being a process vital to our understanding of the origin of life and the Earth´s lithospheric mantle activity, the rates and the environmental factors affecting serpentinization are poorly understood. A collaborative team meade up of researchers from Virginia Tech, The Free University of Berlin, Woods Hole Oceanographic Institution and The University of Texas used synthetic fluid inclusions as micro-reactors in olivine crystals as a model to study the rate of serpentinization. This method allowed them to study mineral precipitation and water activity in real time and in situ.

When discussing their work, Dr. Lamadrid said “We trapped synthetic fluid inclusions (tiny droplets of fluid) with a seawater-like composition in gem quality olivine crystals and then we set the samples to serpentinization conditions (~280ºC). Within a few days, serpentine crystals begin to precipitate inside the synthetic fluid inclusions. Since the inclusions are isolated any changes inside the inclusion can be observed and we can model them as chemical micro-reactors. The serpentinization reaction consumes H2O, so the original salinity starts to increase as more H2O leaves the fluid to form new serpentine crystals. As such, we were able to monitor the amounts of H2O leaving the fluid by measuring changes of the salinity inside the inclusion. The salinity of the fluid inclusions were measured with high precision by measuring changes in the freezing point depression of the fluid inclusions with the Linkam THMSG600 stage.”

Their technique allowed them to study the mineralogy and chemistry of the reaction products. After carrying out experiments with different salinities and fluid compositions, they found the reaction to be highly sensitive to the salinity and chemistry of the fluid. This poses interesting concepts of where serpentinization may occur in the earth’s mantle as well on other planetary bodies. Their novel micro-reactor technique could also be applied to many other minerals, reaction products, and fluid compositions to study fluid-rock reactions in real time and in situ. 
 

Read the full paper here.

Research into the different constituents of Lithium Ion Batteries using Linkam’s LTS120.

Lithium ion batteries (LIBs) are heavily used in the portable electronics industry due to their low weight and high energy output. Although they are incredibly popular, improvements can be made in terms of capacity and replacing the volatile and flammable organic solvents within the batteries. 

Researchers at the Warsaw University of Technology researched the different constituents of Lithium Ion Batteries (LIBs) to increase the conductivity and capacity of the ionic liquid-lithium salt binary system. This was done by introducing lithium salt as a Li+ cation glyme solvent. By using Linkam’s LTS120 system with a Raman spectrometer they could study phase transitions and salt dissociation, giving a better understanding of the conducting mechanism. 

Due to their great conductivity, Ionic liquids (ILs) could be a potential replacement for the dangerous solvents in LIBs. However, there are several issues with their incorporation. Firstly, ILs are produced on a small scale so they are very expensive. Secondly, their high melting points, poor compatibility with electrodes and other electrochemical properties make them less ideal as lithium conducting electrolytes. 

The research group created a new family of ILs to try and improve on the disadvantages of the classic ILs. The ionic salts were mixed with LiTDI salt to create a XMIm+TDI- LiTDI system. This formed a chain shaped [Li(TDI)2]nn- and XMIm+, but this system was found to be a poor conductor of lithium ions. 

Studies from another group found the solvent glyme, when mixed with LiTDI salt, creates a solvated Li(glyme)+ cation and Li polyanion system which is great for ionic conductivity as well as Li cation transference. Both qualities were desired in the Warsaw group’s BMIm+TDI- LiTDI system. 

Karpierz, E. et al. thus incorporated the solvent glyme into their system. Their ternary mixture consisted of an aggregated system of [Li(glyme)]+ cations and [Li(TDI)2]NN- anions dissolved in the ionic liquid BMIm+TDI-. They discovered the order and method of mixing affected the electrochemical properties of their system. They found that by mixing the LiTDI with the glyme first for at least six hours followed by the addition of the ionic liquid, it produces the system with the greatest conductivity.

The group have found a novel method of improving the ionic liquid-lithium salt binary system, which could have great potential application in lithium ion batteries.  

Find out more here

Karpierz, E. et al. Ternary mixtures of ionic liquids for better salt solubility, conductivity and cation transference number improvement. Sci. Rep. 6, 35587; doi: 10.1038/srep35587 (2016).