HFS600-PB4

Magnetic Modes in Rare Earth Perovskites: A Magnetic-Field-Dependent Inelastic Light Scattering study using Linkam’s HFS600-PB4

HFS600E-PB4 shown above  

As the modern world advances and our reliance on technology increases, it becomes necessary to improve the efficiency of semi-conducting materials. Semi-conductors are commonly used as diodes and transistors in devices such as microprocessors. Research into these materials is one of paramount importance. 

Recent studies have found transition metal oxides to have incredible electric, magnetic and superconducting properties, potentially ideal for semiconductors. LaAlO3 and SrTiO3 are wide band gap insulators with perovskite-based structures which are commonly used as substrates for functional oxide thin films. 

However, thin films of these oxides are not of much use except as high-k dielectrics. They require the addition of ions to tune their electronic band structure and thus improve their magnetic and optical properties. It is the interface between these oxides which prove to be the most interesting, their interaction induces magnetic and conductive properties from otherwise non-magnetic, insulating oxides. 

LaAlO3 is a rare-earth based perovskite transition metal oxide. Naturally such materials are isolated as crystals and it is important to understand the native characteristics if we are to better understand thin film behaviour. 

Due to its high-k dielectric properties, LaAlO3 is a promising material for metal oxide-based semiconductor devices. However, concern has been raised in several studies regarding leakage-current which is caused by structural defects. Understanding these defects theoretically and experimentally is of utmost importance for better use of such materials in optical and electronic applications. 

It has also been discovered that lattice strain affects the role and dynamics of defects. Previous work has also demonstrated that phase transitions can occur when samples are placed under certain temperatures. Current theories also suggest that specific engineering of these defects can provide several different functionalities for transition metal oxides. Raman spectroscopy further provides a useful method of probing these defects. 

Researchers from the National University of Singapore, Nanyang Technological University and Trinity College Dublin in Ireland explored novel magnetic excitations using Raman spectroscopy to probe LaAlO3 and several other polar oxide substrates. 

They built on the idea that a host of robust defects present in LaAlO3 could be promising in providing new functions with controlled engineering. The group conducted magnetic field dependant Raman spectroscopic studies at low temperatures to gain a better understanding of lattice phonons and the functionalities of these defects. 

The low temperature Raman spectroscopy was conducted using a WiTec Raman spectrometer and a Linkam HFS600E-PB4 with LNP, allowing a temperature range from <-195°C to 600°C.

The HFS set up with liquid nitrogen cooling and a WiTec Raman Spectrometer.&nbsp;

The HFS600E-PB4 set up with liquid nitrogen cooling and a WiTec Raman Spectrometer. 

When discussing the purpose of the Linkam stage, Dr. Surajit Saha said:

“The HFS was used to perform temperature dependence of the angular momentum states over a range of 80 to 300 K (-193°C to 26°C). It was useful because we could probe the decay of the angular momentum states with increasing temperature which was not possible to perform with our existing variable temperature setup.”

The low temperature experiments provided evidence for novel transitions which disappear at room temperature. These transitions were found to be magnetically sensitive, suggesting a magnetic degree of freedom caused by the defects. 

They further discovered that the key to magnetic sensitive field states is the presence of a heavy element within the transition metal oxide. These angular momentum states and the magnetic interactions can be tailored for novel optical applications. The magnetic degrees of freedom may potentially be tuned and optimised in rare earth perovskites for optical applications. 

The group’s research paves the way for further experimentation and testing to better understand the complexities of transition metal oxides. 

Investigating enhanced ultra-low-frequency interlayer shear modes in folded graphene layers using Linkam’s HFS600E-PB4.

HFS600-PB4 shown above

Graphene has been a hot topic in both fundamental science and practical applications since it was first isolated in 2004. It is the most conductive material known and has many other attractive properties such as flexibility, transparency and impermeability. This makes it suitable for application in wide-ranging areas such as sanitation, biomedical science and electronics. 

The incredible features and applications of this material can be generated by adding layers of graphene on top of a single graphene layer. The interlayer shear modes in these few-layer graphene are very important for understanding their exceptional properties. However, these modes are in very low frequency range with very weak intensities which greatly hinders exploration.

Researchers at the Nanyang Technological University in Singapore, Dr Cong, currently a professor at Fudan University, and Ting demonstrated methods of improving intensities of the shear modes of graphene layers which would in turn allow better probing of few-layer graphene itself and exploration of its application. 

Cong and Ting discovered a way to enhance such interlayer shear modes through folding the bernal-stacked graphene layers with certain twisting angles. They used Linkam’s electrical probe stage, the HFS600E-PB4, which has a temperature range of < -195°C to 600°C in their temperature dependent in-situ Raman spectroscopy experiments. 

When asked to comment on the motivation behind their work, and the purpose of the Linkam stage, Dr Cong said: 

“Investigations of shear modes in few-layer graphene are greatly hindered by the truth that shear modes of graphene layers are extremely weak and almost fully blocked by a Rayleigh rejecter in Raman measurements. 

We found that the shear modes could be dramatically enhanced by properly folding graphene layers. Such strong signals offer the feasibility of performing systematically in-situ temperature Raman scattering measurements with the help of a Linkam stage. The vibrational symmetry, anharmonicity and electron-phonon coupling of the shear modes of graphene layers are uncovered through studies of temperature-dependent Raman spectroscopy. 

The Linkam stage, which is compatible with our confocal low-frequency Raman system, helps us to realize the temperature-dependent Raman measurement with liquid nitrogen”.

Their research will provide a better insight into the mechanical and electrical properties of graphene. 

Cong, C. & Ting, Y. Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers. Nat Commun. 5:4709 | DOI: 10.1038/ncomms5709 (2014).