Visionary Technology

Thermochromic crystals may provide a non-invasive method of determining whether foods have been exposed to destructive temperatures.

Thermochromic crystals may provide a non-invasive method of determining whether foods have been exposed to destructive temperatures.

To be able to accurately gauge the temperature of an object by sight, rather than touch, is a useful method of heat detection and it can also be an excellent safety precaution. 

Such a phenomenon does exist in the form of thermochromic crystals which transition in colour when subjected to heat. The practical application of such substances is diverse, ranging from colour changing baby bottles and novelty mugs to medical devices. 

Josephine Mueller and Taylor Lauster, of North Central College Illinois, USA, conducted thermal microscopy experiments of thermochromic crystals and highlighted a potential application for such crystals in food packaging. 

The students worked alongside The McCrone Group, our partners in the US, who graciously donated a Linkam FTIR600 stage. 

Although designed for infra-red analysis, the students used the heating feature of the FTIR600 to conduct simple heating and cooling experiments on the thermochromic crystals, with the aim of finding potential applications for thermochromism in industry. The quartz window also allowed image capture of the crystals during the experiment.

The study focused on the idea that if a crystal was to be permanently deformed after exposure to a given temperature, this would be a good method of monitoring thermal conditions of food items in transit. Such crystals could be placed within food packaging and their permanent deformation would indicate exposure to destructive temperatures. 

To test the suitability of thermochromic crystals for such an application, the students first grew their own thermochromic crystal - (DEA)2CuCl4

For their thermal analysis study, the crystals were heated from room temperature up to 70°C and cooled back down to room temperature. Below are images captured during the heating and cooling of the thermochromic crystal (courtesy of Taylor and Josephine).

Initial sample of (DEA)2CuCl4 using a 50X objective. The sample has a strong green colour. 

Initial sample of (DEA)2CuCl4 using a 50X objective. The sample has a strong green colour. 

Melted sample of (DEA)2CuCl4  at 50°C, note a change in colour from green to an orange-green. 

Melted sample of (DEA)2CuCl4  at 50°C, note a change in colour from green to an orange-green. 

Melted sample of (DEA)2CuCl4 at 56°C. Most of the sample has now lost the green colouring. 

Melted sample of (DEA)2CuCl4 at 56°C. Most of the sample has now lost the green colouring. 

Fully melted sample of (DEA)2CuCl4 at 70°C, now an orange colour.

Fully melted sample of (DEA)2CuCl4 at 70°C, now an orange colour.

Sample of (DEA)2CuCl4  cooled to room temperature, returning to the original green colour. 

Sample of (DEA)2CuCl4  cooled to room temperature, returning to the original green colour. 

Their results showed the thermochromic change to be reversible for (DEA)2CuCl4 . There appears to be slight structural integrity loss after cooling, but the discrepancies are not obvious to the eye and would require microscopic analysis.

Although these particular crystals are not suitable as temperature determinants in food packaging, their study is a great step forward into improving the transportation of goods. Work must now be done in developing a non-toxic thermochromic crystal which has permanent deformation at destructive temperatures.  

We would like to thank Josephine, Taylor and The McCrone group for their innovative study and for kindly sharing their findings with us. 

By Tabassum Mujtaba

December's Paper of the Month

The dynamic nature of self-healing molecules can be attributed to the reversible cross-linking of functional end-groups. 

The dynamic nature of self-healing molecules can be attributed to the reversible cross-linking of functional end-groups. 

Self-healing in materials is the process by which materials reassemble after applications of stress. In everyday life, we often suffer from small bumps and grazes which we very quickly recover from. This process is an essential feature of living systems which helps to avoid sustaining permanent damage. 

The idea of self-healing has been of great interest in the materials field in recent years. If these properties could be emulated in synthetic materials, the applications would be vast. This year alone has seen many devastating earthquakes and tsunamis, the development of self-healing materials in buildings could help save millions of lives. 

December’s Paper of the Month comes from Yan et al., from Martin Luther University Halle-Wittenberg, who have been working on recreating self-healing in synthetic materials by incorporating it as an intrinsic dynamic network. 

Self-healing occurs when dynamic bond interactions break when stress is applied, but - with time - reform and restore the strength of the material. These types of bonds can be incorporated into the load carrying molecular backbone of a polymer which encourages the self-healing properties. 

For such a system to work the bond interactions of the material must be dynamic, thus weak bond interactions, which are more readily formed and broken, can be exploited. The molecular scaffold should also incorporate a matrix in which the reformation of bonds can occur. 

Previous work suggested that the time for self-healing is related to the time of relaxation of molecular processes. The relationship between the molecular relaxation process and self-healing has been analysed but the processes behind the self-healing were not elucidated. 
To uncover these processes, Yan et al., used a reversible network of telechelic polymers and conducted small angle x-ray scattering and rheological experiments. 

For clear analysis, the network formed by the molecules needs to be well controlled and structured but this is often difficult to achieve. In their experiments, Small Angle X-ray Scattering (SAXS) was used to prove the molecules form a network of small aggregates, which form through self-assembly and become weaker at elevated temperatures. They used a custom made HFS91 Capillary Stage adapted for vacuum in their heated Small-Angle X-ray Scattering experiments. This enabled them to investigate the relaxation process of the material. 

They used telechelic polyisobutylene (PIB) as the relaxation processes of the material were well separated. This in turn allowed them to analyse how the healing process was related to the relaxation of the molecule.
 
Their experiments underlined the molecular processes of healing, allowing them to envision common design rules. With more work, their findings can be used to create better self-healing molecules in the future. 

By Tabassum Mujtaba

Yan, T. et al. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network. Sci. Rep. 6, 32356; doi: 10.1038/srep32356 (2016).

Touchdown in Denver

The Sports Authority Field at Mile High in Denver, home of the current NFL champions. 

The Sports Authority Field at Mile High in Denver, home of the current NFL champions. 

Our sales team recently visited Colorado for the American Association of Pharmaceutical Scientists (AAPS) 2016 annual meeting.  

Industrial and academic delegates from all over the globe descended on the Mile High city of Denver to attend the meeting which covered a diverse range of topics: from drug product manufacturing and stem cell research, to novel pharmaceutical technology. 

Freeze drying and differential scanning calorimetry (DSC) are important techniques in the pharmaceutical industry and we were excited to be showcasing two new stages at AAPS: the optical DSC450 stage and the freeze-drying vial system FDVS

DSC is a technique used to measure temperature and heat flow associated with thermal transitions in materials.  The optical DSC450 system has been optimised to combine the measurement of transition temperatures and enthalpy changes while simultaneously imaging the sample, providing additional information about changes in morphology and colour. 

The Freeze Drying Vial System (FDVS) has been designed as a turn-key solution for simulating the industrial freeze drying process in a compact and efficient form. By incorporating vials, the FDVS works with a small sample volume and uses enough to simulate large scale industrial processes while still minimising sample wastage.

We also brought our humidity controller RH95, freeze drying cryostage FDCS and heating and cooling stage THMS600 which again proved popular within the market. The show reiterated the importance of sample characterisation within the pharmaceutical industry and the role Linkam has within it. 

Ricky Patel and Duncan Stacey outside the McCrone building in Illinois.

Ricky Patel and Duncan Stacey outside the McCrone building in Illinois.

While in the US, we also caught up with our American distributors – the McCrone Group. They graciously showed us around their facilities, including the famous Hooke College and gave us a tour of their private microscopy museum which has a collection of microscopes from the 17th century. We were treated to the delights of Chicago’s famous dining scene - and we are still trying to work off the additional weight!

We would like to give a big thank you to all those who came to see us at the show. We look forward to seeing you at the next pharmaceutical conference.  

By Tabassum Mujtaba

 

November's Paper of the Month

Due to its unique properties Graphene (an allotrope of carbon) has incredible potential for application in many different fields. 

Due to its unique properties Graphene (an allotrope of carbon) has incredible potential for application in many different fields. 

Graphene has been a hot topic in both fundamental science and practical applications since it was first isolated in 2004. It is the most conductive material known and has many other attractive properties such as flexibility, transparency and impermeability. This makes it suitable for application in wide-ranging areas such as sanitation, biomedical science and electronics. 

The incredible features and applications of this material can be generated by adding layers of graphene on top of a single graphene layer. The interlayer shear modes in these few-layer graphene are very important for understanding their exceptional properties. However, these modes are in very low frequency range with very weak intensities which greatly hinders exploration.

This month’s Paper of the Month comes from Nanyang Technological University, in Singapore. Cong, currently a professor of Fudan University, and Ting demonstrated methods of improving intensities of the shear modes of graphene layers which would in turn allow better probing of few-layer graphene itself and exploration of its application. 

Cong and Ting discovered a way to enhance such interlayer shear modes through folding the bernal-stacked graphene layers with certain twisting angles. They used Linkam’s electrical probe stage, the HFS600E-PB4, which has a temperature range of -196°C to 600°C in their temperature dependant in-situ Raman spectroscopy experiments. 

When asked to comment on the motivation behind their work, and the purpose of the Linkam stage, Dr Cong said: 

“Investigations of shear modes in few-layer graphene are greatly hindered by the truth that shear modes of graphene layers are extremely weak and almost fully blocked by a Rayleigh rejecter in Raman measurements. 

We found that the shear modes could be dramatically enhanced by properly folding graphene layers. Such strong signals offer the feasibility of performing systematically in-situ temperature Raman scattering measurements with the help of a Linkam stage. The vibrational symmetry, anharmonicity and electron-phonon coupling of the shear modes of graphene layers are uncovered through studies of temperature-dependent Raman spectroscopy. 

The Linkam stage which is compatible with our confocal low-frequency Raman system, helps us to realize the temperature-dependent Raman measurement with liquid nitrogen”.

Their research will provide a better insight into the mechanical and electrical properties of graphene. 

By Tabassum Mujtaba

Cong, C. & Ting, Y. Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers. Nat Commun. 5:4709 | DOI: 10.1038/ncomms5709 (2014). 

 

Reaching New Peaks

Denver, Colorado is the location for this year’s AAPS annual meeting

Denver, Colorado is the location for this year’s AAPS annual meeting

The Colorado city of Denver, nick-named the Mile-High City because its elevation is exactly one mile above sea level, is a gateway to the snow-capped Rocky Mountains. This year it plays host to the American Association of Pharmaceutical Scientists (AAPS) 2016 annual meeting. 

This week, from 13th to 16th November, the Linkam sales team will be heading to the Colorado Convention Centre for this year’s meeting. We will be bringing our humidity generator RH95, the thermal stage THMS600 and the freeze drying cryo-stage FDCS196.

We are also excited to be announcing the launch of two new Linkam stages – a brand new vial based freeze drying system and a dual pan optical DSC. 

Many of our products are perfect for sample characterisation in the pharmaceutical market. They can be used for a variety of applications including quality assurance, developing freeze drying protocols, dissolution studies and many more.

Come and see us on booth 1470 to discuss how our stages can enhance your sample characterisation needs.

We look forward to seeing you there. 

September's Paper of the Month

From the mating dance of the peacock spider to brood parasitism in the common cuckoo, behavioural ecology is a fascinating and complex science. It is defined as the study of the evolutionary behaviour of animals due to ecological selection pressures, and even the smallest of organisms such as bacteria can effectively emulate eukaryotic social behaviours. 

Streptomycetes are one such genus which can form multi-cellular colonies with distinct multi-nucleated hyphae structures. These hyphae have distinct compartments separated through infrequent cross-walls. The group is also significant due to their medicinal purpose; they produce over half of the world’s antibacterial and antiparasitic drugs and are commonly known for their forest like smell caused by the organic compound Geosmin. 

The group harbour perplexing traits and behaviours. When mechanically macerated, the hyphae surprisingly do not ‘bleed’ to death suggesting the end is plugged and compartmentalised. Furthermore, growing hyphal tips can form up to 100 septa and in such multi-nucleated species, which lack DNA damage control proteins, we are left wondering how DNA can be protected from intense intra-cellular movement. 

September’s Paper of the Month is a collaboration between the laboratory of Professor Gilles Van Wezel and the Koster laboratory and their work using the CMS196M to answer the questions surrounding the complex behaviour of Streptomyces albus.

Read more...

Underground at St Pancras

When you next take a train from St Pancras have a think about what might be going on beneath your feet.

Just across the road from the station, and 28 metres below the pavement, world leaders in their field are working with some of the highest resolution microscopes on the market to investigate the causes of cancer and other diseases. 

The recently opened Frances Crick Institute brings together scientists from all over the world under one roof and is a partnership between Cancer Research UK, Imperial College, King's College, the Medical Research Council, University College London and the Wellcome Trust. 

I was privileged to be invited to visit recently and I would like to thank the Head of Electron Microscopy, Lucy Collinson, and her colleague, Marie Charlotte, for an extremely interesting tour of the labs. 

Read more... 

August's Paper of the Month

Thermophotovoltaics (TPV) is the conversion of thermal radiation released by a thermal emitter into electricity by means of a photovoltaic cell.

Power generation with a TPV system can be envisaged for almost any process and an absence of moving parts has the advantage of low maintenance costs. Thermal emission scales with temperature to a power of 4, meaning temperature above 1000 °C is required to generate significant power in such systems.

However, the wide spectral width of thermal radiation limits the efficiency of TPV conversion as only part of the spectrum is accepted by the photovoltaic cell. August’s Paper of the Month by Dyachenko et al., attempts to solve the TPV efficiency problem by designing and using a unique refractory metamaterial as an emitter instead of the traditional structural resonances.

Read more... 

 

Linkam in France: deuxième partie

The Gateway College bridge crosses the river Rhone  in Lyon.

The Gateway College bridge crosses the river Rhone  in Lyon.

Renowned for its exquisite food, rich cultural history and annual Festival of Lights, Lyon is one of France’s most visited cities. We are excited to announce Linkam will be heading there soon. 

The European Microscopy Congress will take place at the Lyon Convention Centre from the 28th August to the 2nd September. This will be Linkam’s second trip to France this year after the highly successful European Materials Research Society spring meeting.

With over 2000 guests, several hundred guest speakers, specialised workshops and symposia covering the life sciences, instrumentation and methods and materials science, EMC will be an excellent platform to showcase our stages. 

We’ll be taking along the tensile TST350, cryo-correlative CMS196, dual pan DSC, humidity system RH95 and one of our electrical probe stages, the LTS420 E-PB4

Come over to booth 3 to discuss how our stages can enhance your sample characterisation needs - we look forward to seeing you there.

 

July's Paper of the Month

Cryo-preserved cells are vulnerable to Ice Recrystallisation (IR). This is the formation of large ice crystals at the expense of smaller crystals and occurs during repeated freezing and thawing events. These crystals can rupture cell membranes and thus post-thaw cell numbers are often much lower than the number frozen.  IR is a major factor in causing primary graft failure in transplantation patients. 

July’s Paper of the Month by Briard et al., discovered a novel class of carbohydrate derivatives with ice recrystallisation inhibiting properties that retain potency at lower glycerol percentages. The new ice recrystallisation inhibitors (IRIs) are of low molecular weight making them ideal additives to cellular systems. Briard et al., tested the ability of these molecules to reduce ice recrystallisation and ultimately improve the survival rate of cryo-preserved cells.

Read more...

June's Paper of the Month

June’s Paper of the Month by Elie et al. focused on the role of a neuronal protein, Tau, and its link to two major cytoskeletal proteins: actin and microtubules. 

These cytoskeletal filaments have a well-established dynamic and synergistic relationship in terms of cellular growth, division and movement. However the molecular basis governing this synergy remains poorly understood, although several proteins have been identified as potential ‘linkers’ between actin and microtubules. As they play a crucial role in cellular function, determining the mechanics of their relationship is fundamental in understanding cellular irregularities and pathologies.

Read more...

 

May's Paper of the Month

May’s ‘Paper of the Month’ is a collaboration between a number of different laboratories and Institutes: the Max Planck Institute of Colloids and Interfaces, Nanyang Technological University, Massachusetts Institute of Technology and the Wyss Institute for Biologically Inspired Engineering.

Their paper ‘Multi-scale thermal stability of a hard thermoplastic protein-based material’ determined the thermal properties of a potentially novel and sustainable biopolymer to replace the unsustainable petrochemical polymers we rely so heavily on today. 

The search is on to find alternatives to petrochemical based polymers which can be used to synthesize thermoplastics. But it is challenging because not many biopolymers have the chemical properties required to replace thermoplastics. Even when such properties are induced through chemical processing, the biopolymers often lose the integrity of their physical nature. However, one exception may be Sucker Ring Teeth (SRT), made of a protein called Suckerin, which is found in the tentacles of squid and cuttlefish. 

Read more...

Lighting the Way

Next week, Linkam will be taking a short trip to Didcot, in Oxfordshire, for the ‘UK Bio-XFEL Single Particle Imaging Workshop’ hosted by Diamond Light Source (the UK’s national synchrotron science facility). The event will take place on the 2nd and 3rd June in the Pickavance Theatre at the Science and Technology Facilities Council, at Harwell. 

The two day workshop is aimed at the life science sector, mainly biological and biomedical. X-ray Free Electron Lasers (X-FEL) have been used by biological researchers in x-ray crystallography, but another application - Single Particle Imaging (SPI) - is gaining rapid attention due to its ability to determine 3D structures without crystallisation. The workshop gives voice to field experts and focuses on encouraging and demonstrating the use of X-FEL for SPI to laboratory scientists.

Come over to our stand to see our cryo-correlative CMS196, the tensile TST350 and the high temperature TS1500.

We look forward to seeing you there and discussing your sample characterisation needs!

 

Paper of the Month

April’s ‘Paper of the Month’ comes from the Institute of Light and Matter (Université Claude Bernard Lyon 1 and French National Centre for Scientific Research (CNRS)), where the project was conceived by Professor Frédéric Caupin.

Rock minerals almost always contain Fluid Inclusions (FIs). These inclusions contain snippets of atmospheric and fluid data trapped at the time of the rock’s formation and thus have been used in the past as proxies to estimate the variability of the Earth’s surface temperature.
 
These fluid inclusions – upon cooling – can nucleate bubbles within the rock and it is these bubbles that can be studied to determine the ambient temperature at the time the fluid was trapped. 

However this relies on the presence of the nucleation bubble, which is not always there. In this study, Professor Caupin’s group created a new approach which bypasses the need for this nucleation bubble. Their method follows the interaction between laser light and fluid droplets – Raman spectroscopy and Brillouin microscopy – from which paleothermometry data can be drawn.

This approach may provide a novel route to understanding the earth’s climatic history. 

Read more...

Paper of the Month

  Atomic Force Microscopy optical image of black phosphorous. (Image from Su & Zhang, 2015)

 

Atomic Force Microscopy optical image of black phosphorous. (Image from Su & Zhang, 2015)

March’s ‘Paper of the Month’ comes from Dr Yong Zhang and Dr Liqin Su at the University of North Carolina Charlotte (UNCC).

In their paper “Temperature coefficients of phonon frequencies and thermal conductivity in black phosphorous layers” (Applied Physics Letters, 2015), Zhang and Su investigate the vibrational properties and electron-phonon interactions of black phosphorous, as well as how epitaxial or supporting substrates can impact the properties of a 2D material which is often presumed to have weak bonding with the substrate.

Black phosphorous is a particularly promising material due to its layer-dependant band gap, meaning it can function as a semi-conductor – essentially, it can be switched on and off. Its application in new nanotechnologies could give rise to a range of high performance electronic and optoelectronic devices.

Read more…

 

New Video: Cryo-CLEM grid mapping

CMS196M automated mapping of an EM grid at high resolution.  

The cryo-correlative stage, CMS196M can automatically map EM grids at high resolution making it a simple matter to find and record the co-ordinates of the key areas of interest in your sample. The video above shows how easy it is to set up the CMS196M with the new LINK software and create high resolutions maps of the full EM grid.

Freeze Drying Focus Group

pharmaceutics conference Linkam news.png

This March, the Friedrich-Alexander University’s ‘Freeze Drying Focus Group’ will be presented in English for the first time.

The 1 day seminar includes sessions on:

  • The Basic Principles of Freeze Drying
  • The ‘World of Thermal Analysis’ Using Freeze Dry Microscopy — which will be co-presented by Linkam’s Dr Michael Schwertner
  • Defining the quality of a Freeze Dried product
  • Instrument Demonstration and Laboratory Practice
  • Designing a Freeze Drying Cycle
  • and New insights in Freeze Drying of Co-Solvent Systems.

This is the University's Department of Pharmaceutics’ 11th Annual Seminar, and it is an event that has always proved very popular in the past.  

The seminar brings together people from academia, the pharmaceutical industry and vendors & suppliers of equipment to initiate sound scientific discussions in the field of freeze drying and also provides updates on the latest trends and research interests in this field.

Our FDCS196 Freeze Drying Cryo Stage will be on show throughout the day. 

More information and details on how to register for the seminar can be found here.

Paper of the Month

  Dr Matt Gibson using the Linkam BCS196 cryobiology stage to study ice recrystallisation inhibition activity.

 

Dr Matt Gibson using the Linkam BCS196 cryobiology stage to study ice recrystallisation inhibition activity.

January’s ‘Paper(s) of the Month’ come from the Gibson Group at the University of Warwick, a research group led by Dr Matt Gibson.

Matt and his group work at the interface of the organic and polymer chemistries with the life sciences, making use of modern polymer and organic methods to synthesise nano materials for various applications, including regenerative medicine, infectious disease and biotechnology.

Inspired by the evolutionary survival methods of polar region species, such as freeze avoidance using antifreeze (glyco)proteins (AFPs), the team has been working on the design and synthesis of polymer-based AFP mimics as novel new cryoprotectants for cell cryopreservation. They hope this will ultimately improve the availability of transplantable materials for regenerative medicine.

Read more...

New Year, New Products

  Linkam stage. Photo by Linkam's Jim Hayward

 

Linkam stage. Photo by Linkam's Jim Hayward

Welcome back everybody, and a Happy New Year!

At Linkam we have set ourselves a couple of resolutions for the year 2016.

Firstly, we will seek more feedback regarding our stages, so we can continue to refine them to best meet our users’ wants and needs. We hope this is something you might be able to help us with and look forward to talking with you all a bit more over the coming year.

Secondly, we will release a whole range of exciting new products, including our new LINK64 software. 

For updates keep an eye on the website, and on our Twitter and LinkedInpages. Or, if you want to come and see us in person, you can find details of the trade shows Linkam, and our distributors, will be attending in 2016 over on our events page.

Liquid Crystal Microphotography with Linkam

  Nematic Liquid Crystals. Photo by Dr Vance Williams, Simon Fraser University.

 

Nematic Liquid Crystals. Photo by Dr Vance Williams, Simon Fraser University.

We recently discovered an amazing liquid crystal photo gallery, with a collection of microphotographs all taken using a Linkam LTS350 stage (predecessor to the LTS420).

The photos were taken by Dr Vance Williams, an Associate Professor at Simon Fraser University in British Columbia, Canada, who is Principal Investigator in an organic materials chemistry group called the Williams Research Group.

Read more here.